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CB1 receptor antagonists have proven to be clinically effective in treating obesity and related disorders. We
report here the identification of a novel class of azetidinone CB1 antagonists by using virtual screening
methods. For this purpose, we developed a pharmacophore model based on known representative CB1
antagonists and employed it to screen a database of about a half million Schering-Plough compounds. We
applied a stepwise filtering protocol based on molecular weight, compound availability, and a modified
rule-of-five to reduce the number of hits. We then combined Bayesian modeling and clustering techniques
to select a final set of 420 compounds for in vitro testing. Five compounds were found to have >50%
inhibition at 100 nM in a CB1 competitive binding assay and were further characterized by using both CB1
and CB2 assays. The most potent compound has a CB1 Ki of 53 nM and >5-fold selectivity against the
CB2 receptor.

Introduction

Selective cannabinoid CB1 receptor antagonists and inverse
agonists have been shown to be effective clinically for the
treatment of obesity.1 Obesity has become a major public health
challenge and is estimated to be associated with over 100 000
excess deaths every year in the United States alone.2 Recent
surveys show that 28% of men and 34% of women in the United
States are obese, and children are among the groups with the
greatest obesity rate increase.3,4 There is an urgent medical need
for the effective and safe treatment of obesity to lower the risks
of developing cardiovascular disorders, type-2 diabetes, and
other serious diseases.5 The cannabinoid system represents an
attractive target for obesity therapy, and extensive research
efforts in the past two decades have led to the discovery of
rimonabant, an orally active CB1 inverse agonist.6,7 Rimonabant
was recently approved for the treatment of obesity in Europe
and has shown clinical efficacy for smoking cessation as well.
However, rimonabant was not approved in the United States,
and the psychiatric safety concerns may limit its applications.
Additionally, CB1 antagonists could be promising treatments
for cognitive disorders such as memory impairment and several
other diseases.8

The known cannabinoid system in humans consists of two
cannabinoid receptors, CB1 and CB2, with increasing data
suggesting the existence of a third type, CB3.9–11 The cannab-
inoid receptors are G-protein coupled receptors (GPCRs).a

The CB1 and CB2 receptors share 44% sequence identity, which
rises to 68% in the transmembrane domains. The CB1 receptor
is abundantly expressed in the central nervous system as well

as in peripheral tissues, for example, testis, eye, ileum, and
adipocytes. It is involved in the regulation of cognition, memory,
and motor activity and inhibits transmitter release through its
coupling to ion channels. By contrast, the CB2 receptor is almost
exclusively expressed in cells of the immune system and is
assumed to participate in the regulation of immune responses
and inflammatory reactions.

The crystal structure of the CB1 receptor remains unsolved,
but homology models based on the X-ray structure of rhodop-
sin12 have provided insights into the ligand-receptor interactions
for CB1 antagonists.13–16 These models were usually developed
and validated by using available mutagenesis data along with
structure–activity relationship (SAR) information from known
ligands. The ligands were first placed into a putative binding
site in the transmembrane domain, and energy minimization or
molecular dynamics simulations were then applied to relax the
complex structures to produce the ligand-receptor models. As
with other signal transduction GPCRs, the CB1 receptor can
exist in two states, the activated state (R*) and inactive state
(R). It has been suggested that antagonists bind to the two states
with equal potency, whereas inverse agonists bind preferentially
to the inactive state. CB1 receptor models for both states have
been proposed, and the key ligand-receptor interactions have
been described.17,18 Despite their usefulness in explaining
experimental observations and revealing binding interactions,
these homology models have had limited success in structure-
based drug design or virtual screening applications.19,20

In the absence of a reliable target structure, ligand-based
molecular modeling tools can be used to derive the structural
requirements crucial for receptor binding. Pharmacophore
modeling belongs to this approach and has been widely used
in drug discovery. Pharmacophore models are usually developed
with a collection of structurally diverse compounds that are
known to bind to the same active site. Two types of pharma-
cophore models have been reported in the literature. A 3D
quantitative structure–activity relationship (QSAR)-like model
can be developed by using a training set of compounds with
biological activities spread over 3 orders of magnitude.21,22 This
approach is represented by the Hypogen method in the Catalyst
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software.23 The potencies of new compounds can be quantita-
tively predicted by evaluating how well each compound maps
onto the pharmacophore model. Generally speaking, the predic-
tions are heavily affected by the conformational models and
the methods used for pharmacophore mapping, that is, Best or
Fast. On the other hand, a pharmacophore model can be derived
with a training set including only the active compounds. This
approach is represented by the HipHop method in the Catalyst
software. The biological activities of new compounds can be
evaluated qualitatively by whether they match the pharmacoph-
ore model.

A pharmacophore model captures the 3D arrangement of the
structural features common to the active molecules that are
presumably essential for the desired pharmacological activity.
Most of the pharmacophore modeling methods consider func-
tional features such as hydrogen bond donors (HBD), hydrogen
bond acceptors (HBA), hydrophobic groups (HPO), aromatic
rings (AR), positively charged/ionizable groups (PG), and
negatively charged/ionizable groups (NG). Additionally, shape
and excluded volumes can be incorporated into the pharma-
cophore models to represent the framework of the active site.
Pharmacophore models have many applications in drug design.
They can be used to align structurally diverse leads; as a
consequence, the groups in each structure that are crucial for
the biological activity can be identified. Nonessential parts of
the molecule can be modified to improve the physical and
pharmacokinetic properties, or new molecular scaffolds can be
designed to establish novel patent space. Equally importantly,
pharmacophore models have been applied successfully in virtual
screening to select molecules for biological testing from large
databases.22,24–29 Pharmacophore screening is much faster than
protein structure-based virtual screening, therefore making it
possible to work with very large databases. In addition, focusing
on 3D pharmacophore features also enables retrieval of structur-
ally diverse hits as compared to methods using 2D similarity
indices.

In this paper, we describe the development of a CB1
antagonist pharmacophore model and its application as a virtual
screening tool to identify a novel class of CB1 selective
antagonists. We evaluated more than a half million compounds
from our corporate database by using this pharmacophore model
and found a large number of hits that had never been tested
before in cannabinoid receptor bind assays. We applied a
combination of filtering techniques to select a subset of 420
compounds among these hits; the subsequent in vitro assays
revealed a new class of CB1 selective antagonists.

Methods

Training Set for Pharmacophore Model. Eight representative
CB1 selective antagonists and inverse agonists were collected from
the literature, most of them from drug discovery programs at
different pharmaceutical companies.30–37 When multiple structures
were reported in the original literature, only one representative
compound (usually the most potent one) from each structural class
was selected. Structural redundancy is not necessary for the
generation of common feature pharmacophore models. The struc-
tures of these compounds are shown in Figure 1.

Pharmacophore Model Generation. A 3D structure for each
compound in the training set was generated from its 2D SMILES
representation by using the Concord program.38 The structures were
then subjected to energy minimization until the gradient dropped
below 0.05. The minimized structures were used as the starting
points for subsequent conformational searches. A 5000-step Monte
Carlo tortional sampling (MCMM) conformational search was
conducted for each compound. Unique low-energy conformations
within 40 kJ/mol of the corresponding global energy minimum were
collected for each molecule. A conformation was considered unique
only when the maximum displacement of at least one heavy atom
was larger than 0.5 Å compared to all the low-energy conformations
already collected for that molecule. A maximum of 250 unique
conformations were collected for each compound. Energy mini-
mization and conformational search were conducted with Macro-
Model39 using the MMFF94s force field.

Pharmacophore models were generated with the Catalyst HipHop
method. On the basis of the structural characteristics of the training

Figure 1. Structures of the compounds used for pharmacophore model development. The compounds were labeled by their generic name or
company codes when available.
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set molecules, only HBA, AR, and HPO features were considered
for model development. Ten HipHop pharmacophore models were
generated, and each model was visually evaluated by mapping the
molecules in the training set. The model that yielded the most
reasonable mapping for rimonabant was selected for the database
search.

Database Search. A database search was conducted on a
pregenerated Catalyst 3D database of about a half million com-
pounds from the Schering-Plough collection. Standard procedures
such as stripping salts from the structures, discarding compounds
with inorganic atoms, and removing compounds with very high
molecular weight (>900) or too many rotatable bonds (>15) were
applied to select compounds for Catalyst database generation.
Conformational models were generated by using the Catalyst FAST
approach from its SMILES representation, and a maximum of 150
diverse conformations were retained for each compound in the
database. The database search was conducted with Catalyst BEST
flexible search method by using the above-mentioned pharmacoph-
ore model. A molecule must match all features of the pharmacoph-
ore model to be retrieved as a hit.

Hits Selection. At the beginning of the project, a target was set
to assay 420 compounds. As expected, the number of hits obtained
from pharmacophore screening was well above our target (∼22 000
hits). To narrow down the number of hits, a stepwise postsearch
filtering scheme was developed. We first filtered out compounds
with molecular weight higher than 550 because they were not
desirable for lead optimization. The remaining hits were then filtered
by sample availability; any compound with less than 2 mg available
at the time of selection was discarded. Third, we filtered out
compounds with potential pharmacokinetic problems by using a
modified Lipinski’s rule-of-five.40,41 Compounds that did not meet
at least three of the following criteria were left out:

MW e 500
Clog P e 5
Number of HBA e 10
Number of HBD e 3
Number of rotatable bonds e 10
These three steps together eliminated about two-thirds of the

original hits.
We next employed Bayesian modeling and clustering techniques

offered in Pipeline Pilot software42 to further reduce the number
of hits. A Bayesian model was developed at this stage to rank the
hits for their likelihood of being CB1 antagonists. Two data sets
are required for Bayesian modeling, one containing active molecules
and the other one containing inactive reference compounds. We
turned to the MDL Drug Data Report (MDDR)43 for these data
sets. This database holds the structures and activities for drug
candidates and was compiled from published literature such as
patents and research journals. The ACTION field reports the
biological activities for a molecule. Accordingly, we searched the
MDDR database with the keyword CB1 in this field. All compounds
listed as selective CB1 antagonist, CB1 inverse agonist, or CB1
modulator useful for the treatment of obesity were selected as
actives for the Bayesian modeling. We then generated an inactive
data set (negative control) from the rest of the compounds in the
MDDR database by treating and filtering them with the following
steps: remove salts from each structure, keep the largest piece for
entries with multiple fragments, remove compounds with inorganic
atoms, and filter out compounds with MW > 650 or MW < 300.
Pipeline Pilot software was then used to develop a CB1 Bayesian
model by using the FCFP6 structural descriptors. This Bayesian
model was applied to rank the remaining hits.

Clustering was employed to trim down the structural redundancy
among the hits. The Pipeline Pilot maximum dissimilarity clustering
algorithm was applied to cluster the structures. This algorithm starts
with a randomly chosen structure as the first cluster center. The
molecule with the maximal distance from the first compound is
selected as the next cluster center. The compound with the maximal
distance from both current cluster centers is selected after that. The
process is repeated until the desired number of cluster centers is
reached. The nonselected objects are then assigned to the nearest

cluster center to determine the cluster membership. The structural
clustering was based on the pairwise Tanimoto distances calculated
with the FCFP6 fingerprint descriptors.

Cannabinoid Receptor Binding Assays. cDNA expressing the
human CB1 or CB2 receptor in pcDNA3.1 was transfected into
HEK-293 cells and CHO cells, respectively, by using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA). Once stable expression
was achieved, membranes from cells expressing the appropriate
receptor were prepared into membranes for competition and
saturation studies by homogenizing in 50 mM Tris HCl, pH 7.5,
containing 2.5 mM EDTA, 5 mM MgCl, and protease inhibitors
(Complete, Roche Biochemicals, Baltimore, MD) (buffer A). The
homogenate was centrifuged at 40 000g for 30 min. The pellet was
resuspended in buffer A and centrifuged again. The final pellet was
resuspended in buffer A at a concentration of 1 mg/mL protein
and stored at -80 °C.

Receptor binding assays were performed in 96-well plates in a
200 µL final volume. Schering compounds and standards were made
at a stock concentration of 10 mM in 100% DMSO. For single
concentration determinations, the stock solution was diluted to a
final concentration of 100 nM. For concentration curves, the stock
solution was diluted by using 100% DMSO with a Multiprobe
robotics device (Perkin-Elmer, Boston, MA), so that the final
concentrations ranged from 0.1 to 3 µM. Drugs were diluted 20×
into assay buffer A plus 0.4% BSA to yield a final DMSO
concentration of 5%. Ligand concentrations of 3H-CP-55,940 for
these studies ranged from 0.2 to 0.4 nM, and protein concentrations
for CB1 and CB2 membranes ranged from 2 to 20 µg protein. For
both CB1 and CB2 receptor binding studies, nonspecific binding
was defined in the presence of 10 µM final CP-55,940. All assays
were incubated for 1.5 h and were terminated by vacuum filtration
by using a Brandel cell harvester (Brandel Instruments, Gaithers-
burg, MD) over GF/C filter plates (Packard Instruments, Downers
Grove, IL) presoaked in 0.3% polyethylenimine. Filter plates were
washed with ice-cold buffer A plus BSA and dried, and after
addition of Microscint 20 scintillation cocktail (Packard Instru-
ments), the bound radioactivity was determined in a Topcount
scintillation counter (Packard Instruments).

For data analysis, Microsoft Excel Fit 4.0 was used to determine
IC50 values for each compound by using nonlinear regression
analysis. These were converted to Ki values based upon predeter-
mined affinity (Kd) determinations for each receptor preparation.
Kd determinations were made by performing saturation analysis for
each ligand at each receptor by using the same procedures as above,
except that increasing concentrations of each ligand were incubated
with the appropriate membranes in the presence and absence of
CP-55,940. The Kd and Bmax values were then determined by using
nonlinear regression analysis with GraphPad Prism software.44

Results

Training Set. Figure 1 shows the molecular structures of the
eight CB1 selective compounds used for pharmacophore model
development. The generic names or company codes are listed

Table 1. Cannabinoid Receptor Binding Affinities for Compounds
in the Training Set

compound
name

CB1 Ki

(nM)
CB2 Ki

(nM) ref
number of

conformersa

Rimonabant 1.98 >1000 30 62
NESS 0327 0.00035 21 31 130
SLV 319 7.8 7943 32 26
LY 320135 141 >10 000 33 35
Compd 1 <100 not reported 34 25
Compd 2 not reported not reported 35 32
Compd 3 70.3 not reported 36 82
Compd 4 5.8 2312 37 250

a Number of conformers collected from the MacroModel conformational
search. A maximum number of 250 conformers with conformational energy
<40 kJ/mol above the corresponding global energy minimum for each
compound was used for pharmacophore model generation.
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as compound names when available, and the others are simply
assigned as Compd n. Table 1 lists their corresponding CB1
and CB2 affinities as reported in the original literature where
available. In some cases, for example, Compd 2, the exact Ki

values were not reported in the original patents; hence, the
affinities were listed as not reported. These compounds were
included in the training set because they were not only shown
in the original patents but also cited in other literature as potent
selective CB1 antagonists. Furthermore, they represent structur-
ally distinct classes that are useful for pharmacophore modeling.

A conformational search was carried out for each compound
by using MacroModel as outlined in the Methods section. Table
1 also lists the number of unique conformations for each
compound. Only one compound (Compd 3) reached the
maximal unique conformation limit of 250; the energy of the
last conformation was 29.9 kJ/mol above that of the minimum
energy conformation. Visual inspection of the conformers
showed that they provided adequate coverage of the low-energy
conformational space for each compound.

CB1 Pharmacophore Model. The CB1 antagonist pharma-
cophore model was derived by using the Catalyst HipHop
approach. This approach compares the conformational space of
each molecule in the training set and identifies the common
3D configurations of functional features. On the basis of the
structural characteristics of the training set molecules, the
following chemical features were preselected for model genera-
tion: HBA, AR, and HPO. Rimonabant and SLV319 were
selected as the principal molecules for their good CB1 potency
and selectivity. A total of 10 pharmacophore models were
generated by the HipHop hypothesis generation process, all of
which had five features. Seven of the hypotheses have one HBA,
two AR, and two HPO features, and the other three all have
one HBA, one AR, and three HPO features. Given that AR is
more selective than HPO, the hypotheses with only one AR
feature were not further considered. Rimonabant is the most
advanced compound in the training set; therefore, the remaining
seven hypotheses were evaluated on the basis of the fitting
(FAST approach) and the energy of the mapped conformation
of this molecule. The model that provided a high fit value (fit
) 4.61) with the lowest conformational energy (2.2 kJ/mol
above its global energy minimum) for rimonabant was selected
for virtual screening. Figure 2A shows the selected CB1
pharmacophore model. The distances among the centers of some
features are labeled. Figure 2B shows the mapping of Rimona-
bant on this pharmacophore model. The carbonyl group matches
the HBA feature, and the two phenyl groups match the two
aromatic features. The carbon atoms of the piperidyl moiety
and the chlorine atom on the monosubstituted phenyl ring match
the two hydrophobic features.

This pharmacophore model highlights the interactions that
are important for receptor binding and agrees with most of the
findings from recently published CB1 homology studies. The
carbonyl oxygen of rimonabant was suggested to be important
for its activity.45 A hydrogen bond between this carbonyl oxygen
and the K192 residue of the CB1 receptor was proposed to be
able to stabilize a K192-D366 salt bridge at the intracellular
end of transmembrane helices 3 and 6. Formation of this
hydrogen bond increases the affinity and shifts the receptor
equilibrium toward the inactive state. The same receptor model
shows that the binding of rimonabant is further enhanced by
putative favorable aromatic stacking interactions between its
2,4-dichlorophenyl ring and the F200/W279/W356 residues on
one side and the para-chlorophenyl ring and the W255/Y275/
F278 residues on the other side. The lipophilic piperidinyl

moiety fits nicely in a cavity formed by several hydrophobic
residues Val196/Phe170/Met 384/Leu387.

Virtual Screening. The pharmacophore model derived by
using the HipHop approach is expected to qualitatively dis-
criminate between active and inactive molecules. To identify
new CB1 antagonists, we carried out virtual screening on our
compound collection by using this pharmacophore model. The
pregenerated Catalyst 3D database contains about a half million
molecules. The database search using the protocol specified in
the Methods Section resulted in 22 794 hits. The large number
of hits was expected, and they represented only about 5% of
the compounds in the whole database. But this was much more
than the number of compounds we planned to test; therefore,
post pharmacophore filtering was implemented.

To narrow down the pharmacophore model hits to the desired
number, we followed the stepwise filtering protocol outlined in
the Methods section. First, we eliminated compounds with high
molecular weight from further consideration. Filtering with 300
< MW < 550 reduced the number of hits to 18 693. Second,
we filtered the compounds on the basis of their availability in
our compound distribution center at the time of screening. Only
those compounds with an available amount larger than 2 mg
were retained, and this further cut the number of hits down to
10 581. At this stage, it appeared we could afford to eliminate
compounds with potential problematic pharmacokinetic proper-
ties. Accordingly, a modified Lipinski’s rule-of-five was applied.
As a result, more than two-thirds of the original hits were
eliminated after these three filtering steps. A total number of
7247 compounds satisfying all the criteria so far was taken to
the next step.

Figure 2. CB1 antagonist pharmacophore model used for virtual
screening. (A) Geometrical relationships among the pharmacophore
features. AR features are represented by pairs of solid brown spheres;
HPO features are represented by cyan spheres; HBA are represented
by a pair of green spheres (the smaller sphere represents the location
of the HBA atom on the ligand and the larger one the location of an
HB donor on the receptor). The distances (in Å) among the centers of
the features are labeled. (B) Mapping of rimonabant to the pharma-
cophore model. The pharmacophore features are represented by mashed
spheres. Carbon atoms are colored in gray, nitrogen atoms in blue,
oxygen atoms in red, and chlorine atoms in light green. Hydrogen atoms
are not shown for clarity.
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In the last selection step, we employed a combination of
Bayesian ranking and clustering to select the final set of 420
compounds for biological testing. For this purpose, we needed
to develop a Bayesian model for CB1 antagonists. The MDDR
database is a good source for our purpose because accurate
potency data are not necessary for Bayesian modeling as long
as the compounds can be classified categorically. This database
collects biologically active compounds from published literature
and covers structurally diverse drug candidates under various
development stages. We found 78 CB1 antagonists in this
database that could be used as the active set for our Bayesian
modeling (the structures and the MDDR registration numbers
of these compounds are provided as Supporting Information).
To gather a negative control data set, we filtered the rest of the
MDDR collection by using the criteria set forth in the Methods
section. This resulted in a data set containing ∼130 000 druglike
molecules. Once we had the two data sets in place, it was
straightforward to derive a CB1 antagonist Bayesian model by
using Pipeline Pilot software’s learn-good-molecule component.
By using this binary QSAR model, a score representing the
likelihood of being a CB1 antagonist was calculated for each
remaining compound from the previous filtering steps.

Two considerations prompted us to use a combination of
Bayesian modeling and clustering techniques in selecting our
final test set. First, a Bayesian model provides only a crude
estimate of the possibility of a compound being active; we did
not want to rely too heavily on its ranking for compound
selection. Second, our compound collection, like those of many

other pharmaceutical companies, contains many molecules with
minor structural changes as a result of historical drug discovery
projects. The high structural redundancy observed among the
hits did not best serve our purpose of finding novel classes of
CB1 antagonists; we could use the limited biological screening
resources more efficiently by exploring a larger structural space.
On the basis of these considerations, we first selected the top
ranking 2100 compounds by using the CB1 Bayesian model
from the 7247 remaining hits. We then clustered the 2100
compounds into 420 groups by using the Pipeline Pilot
maximum dissimilarity clustering algorithm (on average, five
compounds per cluster). The compound with the highest
Bayesian score in each cluster was selected as its representative.
The molecular structures of these representatives were visually
inspected, and they all seemed to be reasonably druglike. These
420 representatives constituted the final selection for biological
tests.

Cannabinoid Receptor Binding Assays. The 420 com-
pounds were first screened at a single concentration of 0.1 µM
in a CB1 receptor competitive binding assay. Five compounds
were found to have more than 50% inhibition at this concentra-
tion and were further characterized in follow-up assays to
measure their affinities for both CB1 and CB2 receptors. Table
2 lists the assay results and their structures. All five compounds
show good affinity for the CB1 receptor; even the weakest one,
Compd A, has a Ki < 1 µM. (Compd A has a higher affinity
for CB2 receptor; therefore, it is a potent CB2 selective agent.)
The other four compounds all have CB1 Ki < 0.5 µM and show

Table 2. CB1 Antagonists Identified by Virtual Screening

R Number of HB donors, number of HB acceptors and number of rotatable bonds are calculated by using Pipeline Pilot software. � Obtained under the
same assay conditions as the SPRI compounds.
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varied selectivities against the CB2 receptor. The most potent
compound, Compd E, has a CB1 Ki of 53 nM and is more than
5-fold selective against CB2. CP-55,940, a nonselective can-
nabinoid agonist, was run as a standard in every assay
performed, and generally, the Ki value of CP-55,940 was less
than 3-fold different from our historical control. Moreover,
rimonabant was tested under the same condition, and its Ki

values for the CB1 and CB2 receptors were 2.4 nM and 560
nM, respectively, in line with previously reported values.30

Figure 3 shows the mapping of Compd E to the CB1
pharmacophore model. The thioester oxygen atom provides the
HBA function; the three phenyl groups match two AR and one
HPO features in the pharmacophore model; the fluorine atom
and part of the fluorophenyl group fit the other HPO feature.
The azetidinone core provides a nice scaffold for the crucial
functional groups to reach their desired 3D locations. These
compounds represent a novel class of CB1 antagonists that has
not been reported before.

Discussion

The effectiveness of cannabinoid CB1 receptor antagonists
in treating obesity has been demonstrated by the clinical studies
of rimonabant. Even though the marketing of rimonabant in the
United States was recently postponed by the FDA while waiting
for more data on its psychiatric side effects, CB1 antagonists
remain an attractive approach for the treatment of obesity and
its related disorders. The search for new chemotypes that can
reduce or eliminate these side effects becomes even more urgent.
We developed a CB1 antagonist pharmacophore model and
carried out virtual screening of our compound collection with
this model. In the end, we were able to identify a new class of
selective CB1 antagonists. These hits can serve as a starting
point for lead optimization to further enhance the potency,
selectivity, pharmacokinetic, and metabolic profiles and to
reduce undesirable side effects.

Virtual screening has been established as a powerful alterna-
tive complementary to high-throughput screening. When virtual
screening is performed optimally, impressive hit rates have been
reported. Despite the fact that homology models based on the
X-ray structure of bovine rhodopsin have been proposed for
the CB1 receptor, they have not been used as virtual screening
tools to identify new CB1 antagonists. Virtual screening with a

receptor model is hindered by at least three factors: the model
reliability, the absence of a good docking score, and the low
throughput. Even though the development of homology models
has been guided by ever increasing information from mutagen-
esis studies, many uncertainties, for example, the location and
orientation of the transmembrane helices, the conformation of
the sidechains, and the activation state of the receptor, still
hamper the model accuracy because of the low sequence identity
with the available GPCR templates. Furthermore, protein
flexibility is rarely considered in structure-based virtual screen-
ing. Many scoring functions for ligand-protein docking have
been developed in the past decade, and several successful
examples have been reported, but they are still far from perfect
and have yet to be proven adequate for predicting binding
affinities. Docking is relatively slow, and currently, virtual
screening of a half million compounds takes extensive compu-
tational resources.

On the other hand, pharmacophore models based solely on
the ligand structures can be employed, as shown in this study,
to identify new hits. To the best of our knowledge, this paper
presents the first 3D CB1 antagonist pharmacophore model and
demonstrates another success story of using a pharmacophore
model for virtual screening. This model identifies the crucial
chemical features for ligand-receptor interactions that are in
agreement with the findings of the published receptor models.
Both types of model showed that hydrogen bonding and
aromatic interactions were very important for binding to the
CB1 receptor. Pharmacophore models also offer a strong
alternative to docking even when crystal structures of the target
are available. On many occasions, protein-structure-based
pharmacophore models have been used to prefilter compounds
for docking because of their speed or to constrain structures
with required interactions for reliable docking results.25

High-quality conformational models are crucial for the
development of pharmacophore models. In this study, we
employed MacroModel conformations instead of those generated
by Catalyst for their better quality in covering the low-energy
conformational space. For example, we have seen considerable
differences between the two approaches in generating conforma-
tions for saturated six-member rings such as cyclohexane,
piperidine, and piperazine. These groups appear frequently in
drug molecules and are widely used as structural scaffolds. In
crystal structures of druglike molecules or ligand-protein
complexes, these saturated rings overwhelmingly adopt low-
energy chair conformations. Catalyst generates predominantly
twisted conformations and, therefore, leads to many incorrect
mappings of functionally important groups. In comparison, the
MacroModel conformational search produces a fair number of
representative chair conformations for these groups. Of course,
it takes a much longer time to generate the conformational
models this way, but for model development, it is worthwhile
to use better conformational models. We did use Catalyst
conformations in 3D database generation where speed is more
of a concern.

One primary issue with virtual screening by using pharma-
cophore models is the large number of hits retrieved. Postscreen-
ing filtering or ranking is usually needed to reduce the number
of hits to a manageable scale. A practical consideration is the
availability of the samples. Because the number of hits is
plentiful, we can limit ourselves to only the readily available
compounds, therefore, speeding up the experimental procedures.
In many cases, the abundance of hits also affords the opportunity
to retain only compounds with a better chance of having
desirable pharmacokinetic properties. We applied a modified

Figure 3. Mapping of the most potent hit, Compd E, to the CB1
antagonist pharmacophore model. Carbon atoms are colored in gray,
oxygen atoms in red, nitrogen atoms in blue, sulfur atoms in yellow,
and fluorine atoms in light green. Hydrogen atoms are not shown for
clarity.
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rule-of-five filter in this study. Several modeling methods can
be used to further narrow down the hits to a desired subset, for
example, docking with a protein structure,46 filtering with a
QSAR model,47,48 clustering, and similarity search. Bayesian
modeling represents a useful approach when accurate biological
activity data are not available.49 This method provides unsu-
pervised learning for large data collections with a simple two-
class relationship, active or inactive. The resulting QSAR model
can be used to estimate the likelihood of a compound being
active and, therefore, a rough but rapid ranking of the virtual
screening hits.

One way to reduce the number of hits from pharmacophore
screening is to introduce additional constraints, such as shape
and excluded volumes, to the pharmacophore model itself. The
shape constraint can be derived from a mapped active com-
pound. We did have some successful experiences with the shape-
based approach in the past, especially in cases where pharma-
cophore features crowded into a limited space; however, we
chose to simply use a molecular weight filter in this study. The
dimension of our CB1 pharmacophore model is quite large, the
most distant features (the two HPO’s) being 14 Å apart. When
a compound with MW < 550 maps on this pharmacophore
model, its volume overlap with rimonabant is quite high and
often leads to a reasonable shape similarity. Therefore, for the
sake of speed in database search, we did not use the shape
constraint in our virtual screening. Another modification to make
a pharmacophore model more specific is to use excluded
volumes. The excluded volumes can be derived from structurally
similar but inactive compounds with the assumption that the
inactive compounds protrude into the receptor because of their
bulky size. Alternatively, excluded volumes can be derived from
the locations of the receptor atoms constituting the binding site.

Our objective was focused on identifying a new chemical
class rather than finding hits from the same structural family.
To maximize the chance of finding novel chemotypes, we
needed to balance highly ranked compounds in the Bayesian
model and the structural diversity among the compounds
selected for biological assays. Consequently, we applied a
combination of Bayesian ranking and structural clustering to
choose the final screening subset. The CB1 Bayesian model
developed by using known CB1 antagonists in the MDDR
database was by no means a perfect one; hence, the ranking by
this model was not used as an exclusive criterion for compound
selection. The predictive power of Bayesian modeling, like 2D
similarity methods, is usually limited to the scope of the
chemotypes in the training set. On the other hand, in the absence
of other reliable means, this model did provide us with a way
to rank the hits and may enrich true actives among the top
ranking compounds compared to random selection. Another
approach to reduce the number of hits to a preset assay capacity
is to simply cluster them and choose the cluster centers.
Although this approach can cover more structural diversity, it
favors compounds from very small clusters and, in some cases,
even singletons. In our situation, where the selection ratio is
about 17:1, the compounds in the same cluster are not quite
similar in a chemist’s eyes. The bias against hits from large
structural clusters under such circumstance may not be desirable.
On the basis of the limited biological resources, it seems that
using a combination strategy instead of relying solely on either
approach can provide us with an optimal balance between
structural diversity and the chance of finding actives. On the
basis of these considerations, we decided to select a subset of
the top ranking 2100 compounds from the 7247 hits by using
the Bayesian model. They were then clustered into 420 groups

to reduce the structural redundancy, and the Bayesian score was
used again to select one member from each cluster to give the
final set of 420 compounds.

This study demonstrated the power of virtual screening with
a pharmacophore model, and using the modeling techniques in
concert was essential for our success. The bar was set high for
this exercise; only compounds with CB1 inhibition larger than
50% at 0.1 µM were considered hits. This is rarely seen in the
literature, where most of the studies consider compounds with
IC50 or Ki lower than 10 µM as hits. The most potent hit had a
double digit nanomolar affinity for the CB1 receptor and more
than 5-fold selectivity against the CB2 receptor. The CB1
antagonists identified belong to a new chemical class that has
never been reported. The hits represent promising candidates
for further lead optimization: very good potency and selectivity
and proper molecular weight and log P, as well as feasible
chemistry. Indeed, we believe that the following factors helped
ensure the drug likeness of our hits: the screening database was
geared toward drug discovery programs; most undesirable
compounds were filtered out before Catalyst database generation;
and a rule-of-five filter was applied in hits selection. For future
lead optimization, we can combine the pharmacophore model
with 3D-QSAR methods like CoMFA to generate quantitative
predictions. Pharmacophore models like this one can provide a
good alignment template for 3D-QSAR studies. Additionally,
a CB2 pharmacophore model may be used to improve the
selectivity.

Conclusion

In summary, we have developed a pharmacophore model by
using representative CB1 receptor antagonists. We demonstrated
that we can screen a large chemical database with this ligand-
based pharmacophore model to identify new CB1 antagonists.
Usually, the number of hits from such virtual screening exceeds
the number of compounds one intends to test in the biological
assays. In this study, we applied a stepwise filtering protocol
to funnel down the number of initial hits to a manageable scale.
We then developed a Bayesian model and applied clustering
techniques to maximize the chance of finding new chemotypes
while retaining the top scoring compounds. In the end, we were
able to identify a novel structural class of CB1 antagonists with
good potency and selectivity. These hits can be subjected to
further chemical optimization for the treatment of obesity and
its related diseases.
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